Przemysłowy Sterownik Mikroprocesorowy

INDU-20

Przeznaczenie Masownice próżniowe, mieszałki, systemy kontroli próżni

WIK7253.

Sp. z o.o. 41-250 Czeladź ul. Wojkowicka 21 Tel. 32 763– 77– 77, Fax: 32 763 – 75 – 94 www.mikster.pl mikster@mikster.pl

SPIS TREŚCI

SPIS TREŚCI	2
URUCHOMIENIE	. 4
PANEL OPERATORSKI	. 4
TRYB INFO	5
TRYB AUTOSTARTU	5
TRYB START	6
FUNKCJE PRZYPISANE PRZEKAŹNIKOM	.7
REGULATOR "DOCHODZENIA TEMPERATURY"	7
Rys. 1.3	. 7
DOBÓR NASTAW REGULATORA PID	8
FUNKCJE SERWISOWE DOSTĘPNE DLA UŻYTKOWNIKA	9
ALARMY	10
SETUP STEROWNIKA 1	10
PRZYKŁADOWA APLIKACJA* 1	14
NOTATKI1	15
NOTATKI1	16
NOTATKI1	17

DANE TECHNICZNE

- 1 wejście analogowe PT-100 (PT-500, PT1000)
- zakres pomiaru temperatury: -30.. +400 °C (rozdzielczość 0.1 °C)
- 4 wyjścia przekaźnikowe
- 1 wyjście analogowe (0,4..20 mA)
- 1 x RS-485 komunikacja z komputerem PC
- 2 wejścia kontrolne (sygnalizacja alarmu lub blokada klawiatury)
- Zasilanie 230 opcja: (110)(24) ± 10% VAC
- Pobór mocy 3 W
- Stopień ochrony IP65 (od frontu)
- Temperatura pracy -10 °C .. +55 °C
- Temperatura składowania –15 °C .. +60 °C
- Wymiary obudowy 134x134x65 mm
- Otwór montażowy 90x90 mm
- Wewnętrzny czujnik próżni

AUTOSTART: wg RTC z możliwością zaprogramowania wyprzedzenia załączenia sterownika do 10 dni

Rodzaj regulacji dla temperatury: 2 typy regulatora dwustanowego i regulator PID

Zakończenie procesu zależne od zadanego czasu lub ręczne.

Rejestracja wartości zadanych oraz zmierzonych ok. 100000 rejestracji*.

65mm

Rys. 1.0 Otwór montażowy 90x90mm.

* moduł rejestrujący w wersji R

URUCHOMIENIE

Po podłączeniu do sieci sterownik uruchamia się automatycznie. Po wyświetleniu napisu powitalnego wyświetlana jest kolejno: aktualna godzina i minuta, pomiar na kanale 1 – pomiar próżni w procentach, zadana wartość prędkości obrotowej bębna. W przypadku wyświetlania trzech poziomych kresek na wyświetlaczu sterownik sygnalizuje brak lub uszkodzenie elementu pomiarowego. Diody przy klawiszach sygnalizują odpowiedni stan urządzenia (np. tryb edycji lub autostartu). Poziome kreski po lewej stronie wyświetlanej wartości mierzonej sygnalizują stan pracy regulatora: wysterowanie wyjścia sygnalizuje zapalenie się diody. Diody na klawiszach sygnalizują stan pracy sterownika. Możliwe sygnalizowane tryby pracy to AUTOSTART, START, INFO i tryb EDYCJI. W trybie STOP po zakończeniu trybu START na wyświetlaczu zamiast godziny i minuty wyświetlany jest napis "STOP".

UWAGA: W przypadku zaniku zasilania sterownik zapamiętuje aktualny tryb pracy i po ponownym jego zasileniu wraca do tego trybu pracy (chyba ze minął czas zadany w komórce 48 Setup).

PANEL OPERATORSKI

Rys. 1.1 Panel operatorski

1. TRYB EDIT - ZMIANA WARTOŚCI ZADANYCH

1.1 Tryb pracy "bez programów" setup F88=0.

Aby przejść w tryb edycji parametrów zadanych procesu należy:

- nacisnąć klawisz . Pulsuje dioda na klawiszu.

ustawić wartości parametrów zadanych kolejno

- czas trwania trybu START (ilość godzin : ilość minut)
- podciśnienie zadane
- zadana prędkość obrotowa

Akceptacja parametru oraz przejście do edycji następnego następuje poprzez naciśnięcie

- Klawiszami

Wyjście z trybu edycji po ponownym naciśnięciu klawisza

1.2 Tryb pracy "z programami" setup F88=1

Aby przejść w tryb edycji parametrów zapisanych w pamięci sterownika pod kolejnymi numerami programów należy:

Aby wyjść z tryby wyboru programu należy nacisnąć klawisz

Po zatwierdzeniu numeru programu do edycji należy postępować analogicznie jak pkt 1.1

spowoduje wyświetlenie informacji w

2. TRYB INFO

Jednorazowe naciśnięcie klawisza zależności od trybu pracy sterownika:

Dla trybu AUTOSTART

W zależności od parametru w komórce 47 Setup:

Przy wyborze HMD – godzina, minuta i opóźnienie dobowe, o której START Przy wyborze HM – ilość godzin i minut do trybu START

Następne informacje są jednakowe dla wszystkich trybów:

- pomiar temperatury : na górnym wyświetlaczu wyświetlony jest aktualny pomiar temperatury na kanale 1, na dolnym napis TE
- na górnym wyświetlaczu wyświetlony jest napis PSET, na środkowym zadane podciśnienie, poniżej prędkość obrotową bębna
- aktualna data: począwszy od górnego wyświetlacza wypisany jest rok, miesiąc i dzień
- aktualny czas: począwszy od górnego wyświetlacza wypisane są godzina, minuta i sekunda

Zmiana informacji na następną (poprzednią) realizowana jest klawiszami

Aby wyjść z trybu INFO należy ponownie nacisnąć klawisz

3. TRYB AUTOSTARTU

Tryb autostartu stosowany jest do załączenia trybu START z opóźnieniem czasowym.

Przyciśnięcie klawisza spowoduje przejście do edycji parametrów tego trybu. Są możliwe dwa tryby zadawania momentu AUTOSTARTU sterownika:

1. Uruchomienie o określonej godzinie i minucie z możliwością zadania dodatkowo opóźnienia dobowego (F47 SETUP - HMD).

2. Uruchomienie po odliczeniu określonej liczby godzin i minut (F47 SETUP - HM) Aby wyłączyć tryb AUTOSTART należy ponownie nacisnąć klawisz AUTO/START. Istnieje możliwość natychmiastowego przejścia z trybu AUTOSTART do START. W tym celu należy nacisnąć jednokrotnie klawisz START.

Aby ustawić parametry trybu autostart należy:

ustawić wartości parametrów AUTOSTART

3.1 Tryb pracy "bez programów" setup F88=0.

- Klawiszami

- Kolejno gdy (F47=HMD)
- Godzina autostartu
- Minuta autostartu
- Opóźnienie dobowe

Kolejno gdy (F47=HM)

- Liczba godzin do autostartu
- Liczba minut do autostartu _

Akceptacja parametru oraz przejście do edycji następnego następuje poprzez naciśnięcie

Aktywacja AUTOSTARTU następuje poprzez naciśniecie klawisza Tryb autostart jest sygnalizowane poprzez pulsowanie diod wklawiszach START/STOP oraz AUTUISTART.

Wyjście z trybu autostart następuje klawiszem

3.2 Tryb pracy "z programami" setup F88=1.

- wybór zatwierdzić klawiszem

Dalej postępować zgodnie z punktem 3.

7

4. TRYB START

Po ustawieniu parametrów zadanych (patrz TRYB EDIT - ZMIANA WARTOŚCI ZADANYCH) można rozpocząć proces, czyli wprowadzić sterownik w tryb START. W trybie "bez programów" rozpoczęcie oraz zakończenie trybu START następuje po

naciśnięciu klawisza

W trybie "z programami " po naciśnięciu klawisz

hależy klawiszami

podać numer programu do startu.

Wybór należy zatwierdzić klawiszem 🗖

Dla typowych ustawień sterownika po przejściu w tryb START zostają aktywowane regulatory oraz zostaje rozpoczęte odliczanie czasu procesu.

Na wyświetlaczu jest wyświetlona ilość godzin i minut, jakie pozostały do zakończenia procesu.

Zakończenie procesu sygnalizowane jest wewnętrznym sygnalizatorem dźwiękowym wewnątrz sterownika oraz wysterowanie wyjścia przekaźnikowego REL5 (chyba ze jest on zadeklarowany w komórce SF81 Setup jako regulator temperatury). Jeżeli w komórce SF81 jest ustawiona wartość 2 to przekaźniki REL4, REL5 pracują w trybie PRAWE LEWE obroty.

Rys1.2

SF81 → 2 → gdy 2 to REL4 i REL5 realizuje funkcje, które obrazują wykres.
SF75 TL - czas załączenia przekaźnika obroty LEWO (default = 10sek.)
SF76 TR - czas załączenia przekaźnika obroty PRAWO (default = 10sek.)
SF77 TP - czas pauzy (default = 20sek)

Aby wyłączyć sygnał dźwiękowy należy nacisnąć klawisz OK.

FUNKCJE PRZYPISANE PRZEKAŹNIKOM

- **REL 2**: odpowiada za podwyższanie podciśnienia, wysterowanie pompy (regulator: histereza prosta)
- **REL 3**: odpowiada za obniżanie podciśnienia (regulator: histereza odwrócona) Wysterowanie zaworu zapowietrzającego
- **REL 4**: wysterowany w trybie START
- **REL 5**: regulacja temperatury, sygnalizacja sytuacji alarmowej, prawe lewe obroty.

REGULATOR "DOCHODZENIA TEMPERATURY"

Opis parametrów

Tz – temperatura zadana

Tza – temperatura zadziałania regulatora; do tej temperatury wyjście jest wysterowane (grzanie). Po

Rys. 1.3

DOBÓR NASTAW REGULATORA PID

Aby uzyskać dostęp do nastaw regulatora PID sprzęgniętego z danym kanałem pomiarowym należy nacisnąć i trzymać klawisz MINUS, a następnie klawisz INFO. Jeżeli wybrany jest regulator temperatury na przekaźniku REL 5 to na górnym wyświetlaczu pojawi się napis informujący możliwości strojenia regulatora – należy nacisnąć klawisz OK. Na środkowym wyświetlaczu dokonuje się edycji wybranego parametru (pulsująca wartość).Zwiększanie wartości danego parametru klawiszem PLUS, zmniejszanie MINUS. Przejście do następnego parametru oraz zatwierdzenie zmian za pomocą klawisza OK. Wyjście z trybu edycji klawiszem EDIT.

Regulacja odbywa się w oparciu o:

- To okres próbkowania
- Pr-wzmocnienie członu proporcjonalnego
- Ti stała całkowania (czas zdwojenia)
- Td stała różniczkowania (czas wyprzedzenia)
- TS-temperatura zadana

Wpisanie wartości 0 dla członu różniczkującego lub całkującego spowoduje wyłączenie tego członu. Dzięki temu możliwe jest uzyskanie dowolnego algorytmu regulacji.

FUNKCJE SERWISOWE DOSTĘPNE DLA UŻYTKOWNIKA

Nr komórki	Opis			
F0	Ustawienia zegara czasu rzeczywistego.			
	Klawiszem OK. przechodzi się do następnego parametru.			
F1	Zmiana kodu dostępu do funkcji użytkownika			
	Zakres 09999			
	Dla wartości 0 – wyłączone sprawdzanie kodu dostępu			
F2	Informacja o aktualnej wersji oprogramowania			
F3	Włączenie / wyłączenie kliku klawiatury OFE – wyłaczenie			
	ON – właczenie			

Aby wejść w tryb użytkownika należy nacisnąć i trzymać klawisz MINUS, nacisnąć i trzymać klawisz PLUS. Powyższe funkcje są dostępne po podaniu kodu dostępu. Kod dostępu

wprowadza się klawiszami

ALARMY

Sterownik INDU 20 sygnalizuje 11 zdarzeń alarmowych:

- Err 1 Uszkodzenie wewnętrznego czujnika podciśnienia
- Err 2 Uszkodzenie lub brak elementu pomiarowego na kanale 1 (temperatura)
- Err 3
- Err 4 Przekroczone dopuszczalne MAX podciśnienie
- Err 5 Przekroczona dopuszczalna MAX temperatura
- Err 6
- Err 7 Przekroczone dopuszczalne MIN podciśnienie
- Err 8 Przekroczona dopuszczalna MIN temperatura
- Err 9
- Err 10 Alarm z wejścia kontrolnego 1
- Err 11 Alarm z wejścia kontrolnego 2

W celu aktywowania alarmów należy w pierwszej kolejności dobrać czas do zadziałania alarmu [sekundy] w SETUP (komórki 71..73), a następnie aktywować wybrane alarmy w SETUP (komórki 60..70).

Alarmy sygnalizowane są wypisaniem na wyświetlaczu sterownika napisu Err z numerem alarmu, włączenie wewnętrznego buczka i przy wyborze w Setup w komórce 81 pracy przekaźnika REL 5 jako sygnalizacji alarmów, wysterowanie tego wyjścia.

Wystąpienie Alarmu należy potwierdzić klawiszem OK. Jeżeli przyczyna wystąpienia alarmu nie została usunięta sterownik po upływie opóźnienia zadziałania danego alarmu ponownie zasygnalizuje alarm.

SETUP STEROWNIKA

Aby wejść do SETUP należy nacisnąć i trzymać klawisz MINUS a następnie nacisnąć klawisz EDIT. Po podaniu kodu dostępu można dokonywać korekty parametrów sterownika.

N R	WARTOŚĆ DOMYŚLNA	ZAKRES	OPIS
0	1	099	Adres w sieci MODBUS
1	0	04	Prędkość transmisji 0 – 9600 1 – 19200 2 – 38400 3 – 57600 4 – 115200
2	1	012	Typ wejścia pomiarowego dla kanału 1 0 – PT-500 1 – PT-100 2 – PT1000 3 – 020 mA* 4 – 420 mA*

			5 – termopara s**
			6 – termopara b**
			7 – termopara r**
			8 – termopara t**
			9 – termopara i**
			10 – termopara e**
			11 – termopara k**
			$12 - termopara n^{**}$
			* wersia z weiściami pradowymi
			** wersja z obsługa termonar
3			wersja z obsidgą termopai
1			
4	-		Wartość odpowiadająca 0 mA dla kanału 1
5	0	-99,0	dia 0, 20 mA
	400	999°C	ula U20 IIIA
6	100	-99,0	vvartosc odpowiadająca 20 mA dia kanału 1
		999°C	dla 020 mA
7	-	-	-
8	-	-	-
9	-	-	-
10	-	-	-
11	0	-99,0	Wartość odpowiadająca 4 mA dla kanału 1
		999°C	dla 420 mA
12	100	-99,0	Wartość odpowiadająca 20 mA dla kanału 1
		999°C	dla 420 mA
13	-	-	-
14	-	-	-
15	-	-	-
16		-	-
17	0	-20	Korekta wskazań temperatury dla kanału 1
	Ū	20°C	
18		- 20 0	-
10			_
20	On	On/Off	Działanie regulatora podciśnienia
20	OII		
			OII- Zawsze
21	<u>On</u>	On / Off	
21	UI		
			OII- Zawsze
22			UN-LYIKO GUY LIYD START
22	-	-	
23	U	099%	Ivajmniejsza wartosc podcisnienia jaką może
0.4	00	0.000/	
24	99	099%	Największa wartosc podcisnienia jaką może zadać użvtkownik
25	-	-	-
26	-	-	-
27	-	-	-
28	-	-	-
20	1	03	Regulator temperatury REG 3 podniety pod
23	I	00	przekaźnik REL 5

			0 – histereza prosta
			1 – histereza odwrócona
			2 – histereza dochodząca
			3 – PID
30	-	-	-
31	1	0 5	Histereza dolna dla regulatora REG 1
01	· ·	00	nodnjetego do REL 2
22	0	0 5	Historeza delha dla regulatora REC 2
52	0	05	
00			
33	1	05	Histereza dolha dia regulatora REG 3
			podpiętego do REL 5
34	-	-	-
35	0	05	Histereza górna dla regulatora REG 1
			podpietego do REL 2
36	1	05	Histereza górna dla regulatora REG 2
•••	-	••	podpietego do REL 3
37	1	0 5	Historeza dórna dla regulatora REC 3
57	I	05	nodnjotogo do PEL 5
20	5000		
38	50°C	-	i emperatura zadana
		99999°	
		C	
39	-	-	-
40	-	-	-
41	20°C	0 99°C	Temperatura zadziałania (Tza) regulatora
	20 0	000 0	REG 3 podpietego do REL 5 dla algorytmu
			dochodzenia temperatury"
12			
42	-	-	-
43	-	-	-
44	1	0100 s	Opoznienie [sekundy] zadziałania regulatora
			REG 3
			podpiętego do REL 5
45	-	-	-
46	1	01	Rejestracja
			0 – rejestracja ciagła
			1 – rejestracia tylko w trybie
			START
<i>Δ</i> 7	HMD		Format parametrów trybu ALITOSTART
-1		нм	HMD – godzina, minuta i opóźnienie
		1 11 11	dobowo o któroj START
			HIVI – IIOSC godzin i minut do trybu
			START
48	5	010	Maksymalny czas w godz. po którym (po
		godz	zaniku zasilania) sterownik nie wraca do
			trybu START
49	1	1360	Częstotliwość rejestracji pomiarów
		min	
50	1	1360	Czestotliwość reiestracii alarmów
	-	min	

51	۵°	°C / F	Jednostka temperatury
52	1 [min]	099	Czas trwania sygnału dźwiękowego.
		[min]	Uwaga! Gdy wpisana wartość 0 kasowanie
		_	sygnału
			Klawiszem OK.!
53	1	01	Tryb pracy wyjścia alarmowego
			0 – sygnał przerywany
			1 – sygnał ciągły
54	99	099%	Maksymalne dopuszczalne podciśnienie
			(alarmowe)
55	150°C	-99	Maksymalna dopuszczalna temperatury
		999°C	(alarmowa)
56	-	-	-
57	0	099%	Minimalne dopuszczalne podciśnienie
			(alarmowe)
58	-99°C	-99	Minimalna dopuszczalna temperatura
		999°C	(alarmowa)
59	-	-	-
60	Off	On / Off	Aktywacja alarmu uszkodzony czujnik
			podciśnienia
61	Off	On / Off	Aktywacja alarmu uszkodzony czujnik
			temperatury
62	-	-	-
63	Off	On / Off	Aktywacja alarmu przekr. Max podciśnienie
64	Off	On / Off	Aktywacia alarmu przekr. Max temperatura
65	-	-	-
66	Off	On / Off	Aktywacia alarmu przekr. Min podciśnienie
67	Off	On / Off	Aktywacja alarmu, przekr. Min temperatura
68	-	-	-
69	0	04	Obsługa wejścia kontrolnego 1
	·	•	0 - alarm wyłączony
			1 - alarm gdy zwarte wejścia 6-8
			2 - alarm gdy rozwarte wejścia 6-8
			3 - blokowanie klawiatury gdy zwarte
			wejścia 6-8
			4 - blokowanie klawiatury gdy rozwarte
			wejścia 6-8
70	0	04	Obsługa wejścia kontrolnego 2
			0 - alarm wyłączony
			1 - alarm gdy zwarte wejścia 7-8
			2 - alarm gdy rozwarte wejścia 7-8
			3 - blokowanie klawiatury gdy zwarte wejścia 7-8
			4 - biokowanie klawiatury gdy rozwane
74	60	0.000	WEJSUIA /-O
71	60	0999	
70	00	Sek	uszkodzone czujniki.
12	60	0999	Cas opoznienia sygnalizacji alarmu gdy
70	00	Sek	przekroczone dopuszczalne nastawy.
73	60	0999	Czas opoznienia sygnalizacji alarmu gdy
		Sek	alarm na wejsclach kontrolnych.

Instrukcja obsługi 'INDU-20' v.1,4

74	0	09999	Zmiana kodu dostępu do SETUP
			Wartość 0 – sprawdzanie kodu wyłączone
75	10	09999	czas załączenia przekaźnika obroty LEWO
			(default = 10sek.)
76	10	09999	czas załączenia przekaźnika obroty PRAWO
			(default = 10sek.)
77	20	09999	czas pauzy (default = 20sek)
78	-	-	-
79	1	-99100	Offset podciśnienia dla regulatora REG 1
			podpiętego pod REL2
80	99	099	Wartość ustawianej prędkości odpowiadająca
			20mA na wyjściu prądowym
81	0	02	Tryb pracy przekaźnika REL5 :
			0 - sygnalizacja alarmów,
			1 - regulator temperatury REG 3,
			2 - przekaźniki REL4, REL5 pracują w trybie
			PRAWE LEWE obroty. (rys.1.2 str.6)
82	1	01	Reakcja na alarm: uszkodzone czujniki
			pomiarowe
			0: sygnalizacja, 1: stop procesu
83	1	01	Reakcja na alarm: przekroczone nastawy
0.4	4	0.4	0: sygnalizacja, 1: stop procesu
84	1	01	Reakcja na alarm z wejscia kontrolnego
05	0	0.4	0: sygnalizacja, 1: stop procesu
85	0	01	i yp wyjscia prądowego:
			0: 020 mA
00	4	0.1	1: 420 MA
80	l l	01	Stan wyjscia przekaznikowego REL3
			(zawor zapowietrzający) gdy sterownik
			nie znajduje się w trybie START
			0: REL3 niewysterowany
97	0	0.1	Idnostka czasu procesu
07	U	01	0 - adzina : minuta HH-MM
			1 minuta : cokunda MM:SS
QQ	0	0 1	
00	0	01	Ω- bez programów"
			1- z programami"
1 1			i "z programanni

PRZYKŁADOWA APLIKACJA*

Rys. 1.4

* przykład aplikacji należy traktować poglądowo i nie może być w całości lub części traktowany jako projekt układu sterowania

NOTATKI

NOTATKI

NOTATKI