Instrukcja obsługi

iciter o

Inpu500

INDU500

iMAX 500 KW-V iMAX 500 KW-H iMAX 500F KW-V iMAX 500F KW-H iMAX 500 KW-V 28TO iMAX 500 KW-H 28TO iMAX 500F KW-V 28TO iMAX 500F KW-H 28TO

Spis treści

1. Konstrukcja, przeznaczenie, możliwości
2. Rodzaj obudowy - wymiary 4
2.1. Opis wejść, wyjść i portów5
2.1.1 Obudowa INDU iMAX 500
2.1.2 Obudowa INDU iMAX 500F
3. INDU iMAX 500 – Początek pracy
3.1. Funkcje klawisza INFO
4. Programy technologiczne
4.1. Programowanie procesów technologicznych9
4.2. Realizacja programu zapisanego w pamięci11
4.3. Zatrzymanie realizacji wykonywanego programu12
4.4. Edycja zadanych parametrów podczas pracy sterownika12
5. Konfiguracja sterownika13
5.1. Funkcje użytkownika
5.1.1. Hasło programowania
5.1.2. Hasło użytkownika14
5.1.3. Ustawienie czasu i daty
5.1.4. Ustawienie języka menu14
5.2. Funkcje serwisowe 1
5.2.1. Ustawienie parametrów sterownika15
5.2.2. Parametry kroków
5.2.3. Alarmy
5.2.4. Stany specjalne - ustawienie parametrów - stanu PAUZY, stanu STOP oraz F1F8 27
5.2.5. Wyjścia – wyjścia dwustanowe 27
5.2.6. Wyjścia – wyjścia analogowe 32
5.2.7. Regulatory PID
5.2.8. Przegląd techniczny
5.2.9. Program mycia
5.3. Autostart

5.4. Opis złącz i sposobu podłączenia urządzeń zewnętrznych	36
5.4.1. Konfiguracja wejść 1-Wire	36
5.4.2. Sposób podłączenia czujników 1-Wire do sterownika INDU iMAX 500	37
5.4.3. Opis złącz - iMAX500(F) KW-V(H)	38
5.4.4. Opis złącz - iMAX500(F) KW-V(H) - 28TO	39
5.4.5. Opis złącz - iMAX500(F) KW-V(H) – WYJŚCIA PRĄDOWE	40
6. Dane techniczne	41

1. Konstrukcja, przeznaczenie, możliwości

INDU iMAX 500 jest urządzeniem kompaktowym typu All-in-One czyli integrującym w sobie funkcję sterownika, dotykowego panelu operatorskiego, rozbudowanym o opcje komunikacyjne oraz wbudowaną obsługę sygnałów wejściowych i wyjściowych. Dzięki swoim możliwościom sterowniki te znajdują zastosowanie w aplikacjach sterowania procesami przemysłowymi, w których największe znaczenie ma temperatura, czyli np.: komory wędzarnicze, kotły parzelnicze, komory rozmrażalnicze itp. Sterowanie komorami wędzarniczymi to podstawowe zadanie, dla którego powstał ten sterownik, co przejawia się w rodzaju prezentowanych danych, sposobie pracy sterownika itp.

Podstawowym elementem jest dotykowy panel operatorski, jest on niezbędny w każdym sterowniku, pozwala on na:

- konfigurację całego sterownika
- zadawanie parametrów sterujących procesem
- obserwację aktualnych pomiarów

Oznaczenie sterownika	Obudowa	Wymiary zewnętrzne szer x wys.	Wymiary otworu Montażowego szer x wys.	Głębokość montażowa
iMAX 500 KW-H		270x177mm	236x142mm* *szczegóły str. 6	80mm
iMAX 500 KW-V		177x270mm	142x236mm* *szczegóły str. 6	80mm
іМАХ 500 КW-Н 28 ТО		270x177mm	236x142mm* *szczegóły str. 6	80mm
iMAX 500 KW-V 28 TO		177x270mm	142x236mm* *szczegóły str. 6	80mm
iMAX 500F KW-H		190x139mm	156,4x126,9mm* *szczegóły str. 7	100mm
iMAX 500F KW-V		190x139mm	126,9x156,4mm* *szczegóły str. 7	100mm
іМАХ 500F KW-Н 28TO		190x139mm	156,4x126,9mm* *szczegóły str. 7	100mm
iMAX 500F KW- V 28TO		190x139mm	126,9x156,4mm* *szczegóły str. 7	100mm

2. Rodzaj obudowy - wymiary

2.1. Opis wejść, wyjść i portów

	Nazwa i oznaczenie sterownika					7		
Opis złącz	iMAX 500 KW-H	iMAX 500 KW-V	iMAX 500 KW-H 28TO	iMAX 500 KW-V 28TO	iMAX 500F KW-H	iMAX 500F KW-V	iMAX 500F KW-H 28TO	iMAX 500F KW-V 28TO
Zasilanie	24V DC 1A	24V DC 1A	24V DC 1A	24V DC 1A	24V DC 1A	24V DC 1A	24V DC 1A	24V DC 1A
Wyj. Przekaźnikowe	14	14			14	14		
Wyj. Tranzystorowe			28	28			28	28
Wyj. Analogowe	1	1	1	1	1	1	1	1
Wej. Analogowe	4	4	4	4	4	4	4	4
Wej. Cyfrowe	8	8	8	8	8	8	8	8
Wej. Cyfrowe - pomiarowe	1	1	1	1	1	1	1	1
Porty cyfrowe	RS485	RS485	RS485	RS485	RS485	RS485	RS485	RS485

2.1.1 Obudowa INDU iMAX 500

1,7 6,5

3. INDU iMAX 500 - Początek pracy

Po włączeniu zasilania na wyświetlaczu graficznym wyświetlany jest ekran z trzema ikonami INFO, MENU, START.

3.1. Funkcje klawisza INFO

Wybór klawisza INFO spowoduje doświetlenie się na ekranie aktualnych pomiarów temperatury, temperatury batonu, wilgotności oraz ośmiu klawiszy funkcyjnych F (F1..F8) Ustawienia klawiszy funkcyjnych ustawiamy podobnie jak parametr stanu PAUZY i STOP (opisany w rozdziale 5.2.4. Ustawienie parametrów dla stanu PAUZY, stanu STOP oraz F1..F8).

4. Programy technologiczne

4.1. Programowanie procesów technologicznych

Aby utworzyć nowy program lub dokonać edycji już istniejącego należy:

następnie klikamy przycisk

Programowanie

- wpisujemy hasło programowania (domyślnie 1111)
- pojawi się lista programów

UWAGA!!!

Przy pierwszym uruchomieniu lista programów jest pusta należy wprowadzić nazwy programów za pomocą klawiatury alfanumerycznej.

 należy wybrać program, który chcemy wprowadzić lub zmodyfikować klikając na odpowiednia pozycje i zatwierdzając "OK." - wprowadzić nazwę programu (literę na pozycji wprowadzamy naciskając odpowiednią ilość razy klawisz opisany wybraną literą).

Rozpoczynamy edycję procesu. Za pomocą klawiszy chcemy edytować.

Rozpoczynamy edycję procesu. Za pomocą klawiszy chcemy edytować.

1.	Krok
O1:00	OSADZANIE
50	SUSZENIE 1
50	SUSZENIE 2
× 80	WEDZENIE 1
	WEDZENIE 2
	WEDZENIE 3

(wprowadzenie nazwy dla kroku realizowane jest za pomocą funkcji PARAMETRY KROKÓW opisanej w rozdziale 5.2.2)

INDU iMAX 500 posiada możliwość regulacji przyrostu temperatury w funkcji czasu (technologia wędzenia ryb) lub w funkcji temperatury batonu (parzenie w różnicy temperatur). Jeżeli zachodzi taka konieczność, należy podczas wpisywania programu technologicznego w polu z napisem [DELTA] wpisać wielkość przyrostu temperatury w °C/ min, gdy w setup F10 wybrana wartość [2] lub różnicę temperatur pomiędzy temperaturą komory, a temperaturą batonu, gdy w setup F10 wybrana wartość [1].

W przypadku wpisania wartości przyrostu "DELTY" [0.0] nie jest realizowana regulacja przyrostu temperatury.

wybieramy numer cyklu, który

wybieramy numer cyklu, który

4.2. Realizacja programu zapisanego w pamięci

Jeżeli poprzedni proces został zrealizowany do końca lub jest to pierwsze uruchomienie wówczas proces przebiega następująco:

W celu realizacji programu zapisanego wcześniej w pamięci sterownika należy:

- nacisnąć klawisz "START".

Jeżeli w komórce SETUP o nr 57 ustawiona jest wartość 1, to przy każdym uruchomieniu programu możemy określić do dwunastu różnych identyfikatorów wykonywanego procesu. Zarządzanie identyfikatorami odbywa się w programie MPC. Po wpisaniu wszystkich wybranych ID wciśnij przycisk "OK".

ID	
01.	0
01.	0
02.	0
03.	0
04.	0
05.	0

- za pomocą strzałek

możemy przesuwać listę programów.

- wybieramy interesujący nas program i klikamy przycisk "OK."

1920500	MICATES
1. TORUNSKA	
01 OSADZANIE	
50.0 -	
50.0 -)
80.0 -	
01:00 -	
D1 91.0 D2	51.0
STOP PAUSE	START

Jeżeli w komórce SETUP o nr 69 ustawiona jest wartość 2..200 to program zostanie wykonany określona ilość razy, jeżeli ustawiona wartość -1 wówczas program wykonywany jest w nieskończonej pętli.

4.3. Zatrzymanie realizacji wykonywanego programu

W każdej chwili możemy przerwać wykonywanie programu, aby to zrobić należy nacisnąć klawisz "STOP". Można również przerwać chwilowo wykonywanie programu, aby to zrobić należy nacisnąć klawisz "PAUSE".

Jeżeli program nie zostanie zakończony w sposób naturalny tylko poprzez zanik zasilania, to przy następnym uruchomieniu sterownik automatycznie będzie kontynuował przerwany proces w przypadku gdy przerwa zasilania nie przekroczy czasu ustawionego w komórce SETUP o nr 12.

4.4. Edycja zadanych parametrów podczas pracy sterownika

Istnieje możliwość korygowania zadanych wcześniej parametrów, podczas wykonywania programu przez sterownik. W tym celu należy (podczas realizacji programu) nacisnąć klawisz

a wartości zadane zaczynają migać na zielono.

Aby edytować dany parametr należy kliknąć odpowiednia belkę, po wprowadzeniu zmian klikamy klawisz "OK".

Sterownik ma możliwość zablokowania edycji parametrów podczas realizacji procesu. Funkcję tą realizuje komórka SETUP nr 19.

UWAGA!!!

Wprowadzone podczas pracy sterownika zmiany obowiązują tylko do momentu zakończenia procesu technologicznego. Po zakończeniu programu sterownik "pamięta" program z danymi ustawionymi podczas procesu programowania. Podczas edycji danych programu zostaje wstrzymane odliczanie czasu i kontrola warunku zakończenia cyklu. Sterownik automatycznie wraca do normalnego trybu pracy jeżeli przez minutę nie zostanie naciśnięty żaden klawisz.

5. Konfiguracja sterownika

Sterownik dysponuje bardzo rozbudowanymi funkcjami konfiguracyjnymi, umożliwiającymi dostosowanie jego parametrów i sposobu pracy do indywidualnych potrzeb użytkownika. Odpowiednie ustawienia dokonane poprzez menu konfiguracyjne zapamiętywane są przez sterownik i wykorzystywane podczas pracy.

Konfiguracja sterownika została podzielona na następujące funkcje:

- Programowanie
- Funkcje użytkownika
- Funkcje serwisowe 1
- Funkcje serwisowe 2
- Autostart
- Mycie

5.1. Funkcje użytkownika

W tych funkcjach mamy możliwość ustawienia:

- hasło programowania
- hasło użytkownika
- czasu i daty
- języka menu

5.1.1. Hasło programowania

Aby zmienić hasło programowania najpierw należy wprowadzić stare hasło (1111) a następnie wpisać nowe hasło.

5.1.2. Hasło użytkownika

Aby zmienić hasło użytkownika najpierw należy wprowadzić stare hasło (1111) a następnie wpisać nowe hasło

5.1.3. Ustawienie czasu i daty

Aby ustawić czas i datę należ wybrać funkcję "ZEGAR" i wprowadzić odpowiednia datę i czas z klawiatury zatwierdzając wybór przyciskiem OK.

5.1.4. Ustawienie języka menu

Aby ustawić język menu należy wybrać funkcję "JĘZYK".

5.2. Funkcje serwisowe 1

W tych funkcjach mamy możliwość wyboru:

- ustawień
- parametrów kroków
- alarmów
- stany specjalne
- wyjścia
- regulatory
- program mycia

Aby wejść do Funkcji serwisowych 1, należy podać hasło użytkownika

5.2.1. Ustawienie parametrów sterownika

Aby ustawić parametry sterownika należy wybrać funkcję "USTAWIENIA" Teraz rozpoczynamy edycję parametrów sterownika (parametry zapisane są w komórkach ponumerowanych od F01..F77) Aby edytować wybrany parametr należy wybrać go z listy i kliknąć klawisz "OK."

Powyższe czynności powtarzamy do momentu ustawienia pożądanych wartości w każdej komórce. Znaczenie poszczególnych komórek przedstawia tabela:

Nr. komórki	Nazwa komórki	Wartość ustawiona fabrycznie	Zakres	OPIS
F01	ADRES STEROWNIKA	1	132	Numer w sieci RS - 485 pod jakim widziany jest sterownik przez komputer PC.
F02	PARAMETRY TRANSMISJI	4	04	Prędkość transmisji RS485 – połączenie z PC 0 – 9600 1 – 19200 2 – 38400 3 – 62500 4 – 115200
F03	POZIOM PODŚW. LCD	0	02	0 – max 1 – min 2 – optymalne
F04	CZAS WAR. KOŃCA	1	099	Dodatkowy czas do zakończenia cyklu
F05	STATUS PAUZY	0	02	 0 - pauza z klawisza 1 - pauza wyzwalana cyklicznie zgodnie z programem czas cyklu zatrzymany 2 - pauza wyzwalana cyklicznie zgodnie z programem czas cyklu nie zatrzymany
F06	BUCZEK ALARMU	1	01	0 – wyłączony 1 – załączony
F07	JEDNOSTKA TEMPERATURY	0	01	Jednostka pomiaru temperatury 0 – 0 °C 1 – 0 °F

F08	ZAD. TEMP. PŁYTY	380	-99999	Temperatura płyty dymogeneratora
F09	ZAD. TEMP. DYMU	250	-99999	Temperatura dymu
F10	TYP DELTY	0	02	0 - delta wyłączona 1 - delta baton-komora 2 - delta przyrost temperatury w czasie
F11	CZESTOTLIW OŚĆ REJESTRACJI	1	099	Częstotliwość zapisu rejestracji
F12	RESTART PO ZANIKU ZAS.	40	0999	Czas w minutach [min]
F13	MAX.ZAD.TE MP.KOM	200	200	Maksymalna temperatura zadana komory
F14	MAX.ZAD.TE MP.BAT	200		Maksymalna temperatura zadana batonu
F15	TYP POM. WILG.	0	05	Typ pomiaru wilgotności: 0 – metodą psychrometryczną 1 – za pomocą cz. prądowego na kanale 1 2 – za pomocą cz. prądowego na kanale 2 3 – za pomocą cz. prądowego na kanale 3 4 – za pomocą cz. prądowego na kanale 4 5 – za pomocą cz. cyfrowego 1Wire
F16	PRZEKAŹNIK STEROWANY RĘCZNIE	0	014	0 – funkcja nieaktywna 114 numer przekaźnika sterowanego ręcznie.
F17	Delta aktywna	1	01	0 – funkcja nieaktywna 1 – funkcja aktywna
F18	WILGOTNOS C AKTYWNA	1	01	0 – parametr ukryty 1 – parametr widoczny na wyświetlaczu
F19	BLOKADA EDYCJI	0	01	0 – edycja parametrów procesu w czasie jego trwania. 1 – brak edycja parametrów procesu w cczasie jego trwania
F20	DŹWIĘK KLAWIA	1	01	0 – sygnalizacja dźwiękowa wyłączona 1 – sygnalizacja dźwiękowa załączona

F21	MAX.TEMP. KOMORY	100	-99999	Maksymalna dopuszczalna temperatura komory
F22	MAX.TEMP. BATONU	90	-99999	Maksymalna dopuszczalna temperatura batonu
F23	MAX.TEMP.P ŁYTY	800	-99999	Maksymalna dopuszczalna temperatura dymogeneratora
F24	MAX.TEMP.D YMU	800	-99999	Maksymalna dopuszczalna temperatura dymu
F25	MAX.WILGO TNOSC	99	099	Maksymalna dopuszczalna wilgotność
F26	KOREKCJA T.KOM.S	0	-200200	Wartość korekty temperatury komory – czujnik suchy
F27	KOREKCJA T.KOM.M	0	-200200	Wartość korekty temperatury komory – czujnik mokry
F28	KOREKCJA T.BAT	0	-200200	Wartość korekty temperatury batonu
F29	KOREKCJA T.PLYTY	0	-200200	Wartość korekty temperatury płyty dymogeneratora
F30	KOREKCJA T.DYMU	0	-200200	Wartość korekty temperatury dymu
F31	KOREKCJA WILGOTNOŚ CI	0	099	Korekcja wilgotności
F32	TYP WEJSC CYFROWYCH	0	01	Rodzaj napięcia podawanego na wejścia kontrolne: 0 – napięcie stałe 1 – napięcie zmienne
F33	WARUNEK KONCA	0	01	Rodzaj sygnału wejściowego warunku zakończenia cyklu 0 – sygnał wejściowy z wejścia kontrolnego 1 – sygnał wejściowy z wyjścia przekaźnika
F34	NR. WEJ. WAR. KOŃCA	0	114	Numer wejścia kontrolnego lub przekaźnika dla warunku końca cyklu

F35	MIN.TK ZAD	0	-99999	Minimalna zadana temperatura komory
F36	MIN.TB ZAD	0	-99999	Minimalna zadana temperatura batonu
F37	MIN. WILG ZAD	0	099	Minimalna zadana wilgotność
F38	MAX. WILG ZAD	0	099	Maksymalna zadana wilgotność
F39	MIN DODATEK 1 ZAD	0	-199999	Minimalna wartość dodatku 1
F40	MAX DODATEK 1 ZAD	0	-199999	Maksymalna wartość dodatku 1
F41	MIN DODATEK 2 ZAD	0	-199999	Minimalna wartość dodatku 2
F42	MAX DODATEK 2 ZAD	0	-199999	Maksymalna wartość dodatku 2
F43	Stat al. max Tk	0	01	0-alarm gdy Tk>TkMAX 1-alarm gdy Tk>TkZad+TkMAX
F44	Stat al. max TB	0	01	0-alarm gdy TB>TBMAX 1-alarm gdy TB>TBZad+TBMAX
F45	Stat al. max WIL	0	01	0-alarm gdy WIL>WILMAX 1-alarm gdy WIL>WILZad+WILMAX
F46	Stat al. max TP	0	01	0-alarm gdy TP>TPMAX 1-alarm gdy TP>TPZad+TPMAX
F47	Stat al. max TD	0	01	0-alarm gdy TD>TDMAX 1-alarm gdy TD>TDZad+TDMAX
F48	Min. temp. Komory	0	-100999	Minimalna temperatura komory
F49	Min. temp. Batonu	0	-100999	Minimalna temperatura batonu
F50	Wolne			

F51	Wolne			
F52	Wolne			
F53	Wolne			
F54	Wolne			
F55	Wolne			
F56	Wolne			
F57	ID	0	01	0 – identyfikacja wyłączona 1 – identyfikacja włączona
F58	PRZEG.TECH.	0	01	0 – funkcja wyłączona 1 – funkcja włączona
F59	NR.PRZEK. WEDZEN	0	014	Numer przekaźnika wędzenia – przekaźnik do odliczania czasu pomiędzy kolejnymi procesami i mycia komory
F60	CZAS DO MYCIA	0	0999	Czas pomiędzy procesami mycia wyrażony w godzinach
F61	HASŁO PROGRAMO- -WANIA	1	01	0 – funkcja wyłączona, wejście do menu "Programowanie" nie wymaga podania hasła 1 – funkcja załączona, wejście do menu "Programowanie" wymaga podania hasła
F62	HASŁO UŻYTKOWNI- -KA	1	01	0 – funkcja wyłączona, wejście do menu "Funkcje serwisowe 1" nie wymaga podania hasła 1 – funkcja załączona, wejście do menu "Funkcje serwisowe 1" wymaga podania hasła
F63	LOGIKA WEJŚĆ CYFROWYCH	1	01	0 – logika dodatnia 1 – logika ujemna
F64	Wolne			

F65	Czujnik CLIPS	0	03	 0 – Czujnik CLIPS nieobsługiwany 1 – Tk/W pomiar z czujnika CLIPS 2 – TEMP. PŁYTY: pomiar z termopary (moduł PTOWK); TEMP. DYMU: pomiar z CH4 (analogowo) 3 – Nie wykorzystane
F66	WOLNE			
F67	WOLNE			
F68	Jednostka czasu	0	01	0 – HH:MM ; 1 – MM:SS
F69	Stała licznika	0	09999	Stała licznika - dzielnik dla regulatora licznik impulsów
F70	llość zapętleń		-199	 -1 – program powtarzany w nieskończonej pętli. 0,1 – program wykonywany jednokrotnie. 299 – program powtarzany K - Krotność (2-99)
F71	Głębokość filtra Rh1	0	09999	Filtr wilgotności główny.
F72	Głębokość filtra Rh2	2	05	Filtr wilgotności wyświetlanej.
F73	PRZEKAŹNIK SILNIKA BIEG 1	0	114	0 – funkcja nieaktywna 114 – określa który z przekaźników steruje biegiem 1 silnika
F74	PRZEKAŹNIK SILNIKA BIEG 2	0	114	0 – funkcja nieaktywna 114 – określa który z przekaźników steruje biegiem 2 silnika
F75	CZAS ROZPĘDZA- -NIA SILNIKA	10	099	Czas podawany w sekundach. Określa minimalny czas potrzebny do rozpędzenia silnika na biegu pierwszym aby można było bezpiecznie przełączyć go na bieg 2.

F76	CZAS HAMOWA- -NIA SILNIKA	10	099	Czas podawany w sekundach. Określa minimalny czas potrzebny wyhamowania silnika z biegu drugiego aby można było bezpiecznie przełączyć go na bieg 1
F77	Typ wyjścia analogowego	1	01	0 – 020mA 1 – 420mA
F78	Czas wyświetlania INFO	0	09999	0 – Okno "INFO" nie jest ukrywane automatycznie. 19999 – czas po którym następuje automatyczne ukrywanie
F79	I1 MAX	0	-99999999	Skalowanie wartości dla wejścia prądowego 1.
F80	I1 MAX	100	-99999999	Skalowanie wartości dla wejścia prądowego 1. Wartość max.
F81	I2 MIN		-99999999	Skalowanie wartości dla wejścia prądowego 2.
F82	I2 MAX		-99999999	Skalowanie wartości dla wejścia prądowego 2. Wartość max.
F83	I3 MIN		-99999999	Skalowanie wartości dla wejścia prądowego 3.
F84	I3 MAX		-99999999	Skalowanie wartości dla wejścia prądowego 3. Wartość max.
F85	14 MIN		-99999999	Skalowanie wartości dla wejścia prądowego 4.
F86	I4 MAX		-99999999	Skalowanie wartości dla wejścia prądowego 4. Wartość max.
F87	P min			
F88	P max			
F89	Dodatek 1 aktywny	1	01	0 – dodatek 1 nieaktywny 1– dodatek 1 aktywny
F90	Dodatek 2 aktywny	1	01	0 – dodatek 2 nieaktywny 1– dodatek 2 aktywny

F91	Pomiar temperatury batonu widoczny	1	01	0 - pomiar temp. niewidoczny 1 - pomiar temp. widoczny
F92	F1 TRYB	1	01	0 – przycisk F1 bistabilny 1– przycisk F1 monostabilny
F93	F2 TRYB	1	01	0 – przycisk F2 bistabilny 1– przycisk F2 monostabilny
F94	F3 TRYB	1	01	0 – przycisk F3 bistabilny 1– przycisk F3 monostabilny
F95	F4 TRYB	1	01	0 – przycisk F4 bistabilny 1– przycisk F4 monostabilny
F96	F5 TRYB	1	01	0 – przycisk F5 bistabilny 1– przycisk F5 monostabilny
F97	F6 TRYB	1	01	0 – przycisk F6 bistabilny 1– przycisk F6 monostabilny
F98	F7 TRYB	1	01	0 – przycisk F7 bistabilny 1– przycisk F7 monostabilny
F99	F8 TRYB	1	01	0 – przycisk F8 bistabilny 1– przycisk F8 monostabilny
F100	Edycja kroku w cyklu	1	01	Możliwość wyboru kroku technologicznego dla bieżącego cyklu

Uwaga!!!

Ustawienie jednakowych wartości MIN i MAX spowoduje uniemożliwienie edycji parametrów

5.2.2. Parametry kroków

Każdy proces sterowany przez INDU iMAX 500 składa się z kolejno wykonywanych kroków technologicznych. W sterowniku mogą zostać zapisane ustawienia 16 kroków.

Dla każdego kroku należy zdefiniować:

- nazwę
- stany przekaźników
- warunek końca kroku

Aby ustawić te parametry należy wybrać funkcję "Parametry kroków" a następnie wybrać

z listy odpowiedni krok i kliknąć klawisz "OK"

- wprowadzić nazwę kroku "OK"
- pojawiły się symbole oznaczające poszczególne przekaźniki (symbol 📁 oznacza, że w danym

kroku przekaźnik będzie aktywny, natomiast symbol oznacza, że przekaźnik będzie nieaktywny), jeżeli chcemy zmienić stan przekaźnika wystarczy go wybrać.

Następnie wybieramy warunek zakończenia kroku technologicznego.

Nr.	Symbol	Warunek końca
1	CZo>CZz	koniec po osiągnięciu czasu zadanego
2	Tko>TKz	koniec po przekroczeniu wartości zadanej temperatury w komorze
3	Tbo>TBz	koniec po przekroczeniu wartości zadanej temperatury batonu
4	Wo>Wz	koniec po przekroczeniu wartości zadanej wilgotności
5	CZo>CZz lub Tko>TKz	koniec po osiągnięciu czasu zadanego lub po przekroczeniu wartości zadanej temperatury w komorze
6	CZo>CZz lub Tbo>TBz	koniec po osiągnięciu czasu zadanego lub po przekroczeniu wartości zadanej temperatury batonu
7	CZo>CZz lub Wo>Wz	koniec po osiągnięciu czasu zadanego lub po przekroczeniu wartości zadanej wilgotności
8	CZo>CZz i Tko>TKz	koniec po osiągnięciu czasu zadanego i po przekroczeniu wartości zadanej temperatury w komorze

9	CZo>CZz i Tbo>TBz	koniec po osiągnięciu czasu zadanego i po przekroczeniu wartości zadanej temperatury batonu
10	CZo>CZz i Wo>Wz	koniec po osiągnięciu czasu zadanego i po przekroczeniu wartości zadanej wilgotności
11	Tko <tkz< th=""><th>koniec po spadku temperatury w komorze poniżej wartości zadanej</th></tkz<>	koniec po spadku temperatury w komorze poniżej wartości zadanej
12	Tbo <tbz< th=""><th>koniec po spadku temperatury w batonie poniżej wartości zadanej</th></tbz<>	koniec po spadku temperatury w batonie poniżej wartości zadanej
13	Wo <wz< th=""><th>koniec po spadku wilgotności poniżej wartości zadanej</th></wz<>	koniec po spadku wilgotności poniżej wartości zadanej
14	CZo>CZz lub Tko <tkz< th=""><th>koniec po osiągnięciu czasu zadanego lub po spadku temperatury w komorze poniżej wartości zadanej</th></tkz<>	koniec po osiągnięciu czasu zadanego lub po spadku temperatury w komorze poniżej wartości zadanej
15	CZo>CZz lub Tbo <tbz< th=""><th>koniec po osiągnięciu czasu zadanego lub po spadku temperatury w batonie poniżej wartości zadanej</th></tbz<>	koniec po osiągnięciu czasu zadanego lub po spadku temperatury w batonie poniżej wartości zadanej
16	CZo>CZz lub Wo <wz< th=""><th>koniec po osiągnięciu czasu zadanego lub po spadku wilgotności poniżej wartości zadanej</th></wz<>	koniec po osiągnięciu czasu zadanego lub po spadku wilgotności poniżej wartości zadanej
17	CZo>CZz i Tko <tkz< th=""><th>koniec po osiągnięciu czasu zadanego i po spadku temperatury w komorze poniżej wartości zadanej</th></tkz<>	koniec po osiągnięciu czasu zadanego i po spadku temperatury w komorze poniżej wartości zadanej
18	CZo>CZz i Tbo <tbz< th=""><th>koniec po osiągnięciu czasu zadanego i po spadku temperatury w batonie poniżej wartości zadanej</th></tbz<>	koniec po osiągnięciu czasu zadanego i po spadku temperatury w batonie poniżej wartości zadanej
19	CZo>CZz i Wo <wz< th=""><th>koniec po osiągnięciu czasu zadanego i po spadku wilgotności poniżej wartości zadanej</th></wz<>	koniec po osiągnięciu czasu zadanego i po spadku wilgotności poniżej wartości zadanej
20	INn=1	koniec gdy włączony "wyzwalacz końca"
21	CZo>CZz i INn=1	koniec po osiągnięciu czasu zadanego i musi być włączony "wyzwalacz końca"
22	CZo>CZz lub INn=1	koniec po osiągnięciu czasu zadanego lub po włączeniu "wyzwalacz końca"
23	INn=0	koniec gdy wyłączony "wyzwalacz końca"
24	CZo>CZz i INn=0	koniec po osiągnięciu czasu zadanego i musi być wyłączony "wyzwalacz końca"
25	CZo>CZz lub INn=0	koniec po osiągnięciu czasu zadanego lub po wyłączeni "wyzwalacz końca"

5.2.3. Alarmy

W sterowniku może zostać wywołane 16 alarmów, dla każdego alarmu możemy zdefiniowane:

- nazwa
- stan przekaźników
- czas opóźnienia alarmu czas od wykrycia alarmu do momentu jego aktywacji
- logika wyjść
- status alarmu

Aby ustawić parametry alarmu należy wybrać funkcję "ALARMY" pojawi się lista wszystkich alarmów.

Nr.	Nazwa alarmu	Opis alarmu
1	Awaria palnika	Alarm gdy stan aktywny na wejściu dwustanowym Di1
2	Brak fazy R	Alarm gdy stan aktywny na wejściu dwustanowym Di2
3	Brak fazy S	Alarm gdy stan aktywny na wejściu dwustanowym Di3
4	Brak fazy T	Alarm gdy stan aktywny na wejściu dwustanowym Di4
5	In5	Alarm gdy stan aktywny na wejściu dwustanowym Di5
6	In6	Alarm gdy stan aktywny na wejściu dwustanowym Di6
7	In7	Alarm gdy stan aktywny na wejściu dwustanowym Di7
8	In8	Alarm gdy stan aktywny na wejściu dwustanowym Di8
9		Nieużywany
10		Nieużywany
11		Nieużywany
12	Czujnik komory	Alarm gdy brak czujnika lub uszkodzony czujnik na wejściu analogowym Ch1
13	Czujnik batonu	Alarm gdy brak czujnika lub uszkodzony czujnik na wejściu analogowym Ch3
14	Czujnik mokry	Alarm gdy brak czujnika lub uszkodzony czujnik na wejściu analogowym Ch2
15	Czujnik dymu	Alarm gdy brak czujnika lub uszkodzony czujnik na wejściu analogowym Ch4

16		Nieużywany
17	Temp. Komory	Alarm gdy przekroczona maksymalna temperatura komory Ch1
18	Temp. Batonu	Alarm gdy przekroczona maksymalna temperatura batonu Ch3
19	Wilgotność	Alarm gdy przekroczona maksymalna wilgotność.
20	Temp. Dymu	Alarm gdy przekroczona maksymalna temperatura batonu Ch4

Uwaga!!!

Stan aktywny na wejściu dwustanowym oznacza: stan niski, gdy F63 logika wejść cyfrowych = 0 stan wysoki, gdy F63 logika wejść cyfrowych = 1

Należy wybrać alarm którego parametry chcemy ustawić należy go wybrać i nacisnąć "OK", wprowadzić nazwę z klawiatury alfanumerycznej i nacisnąć "OK"

- ustawić stany przekaźników analogicznie jak przy ustawianiu parametrów kroków

"Opóźnienie alarmu" – wpisać czas po jakim ma nastąpić reakcja sterownika na wystąpienie alarmu (czas podawany jest w sekundach)

"Logika" – funkcja ta określa w jaki sposób powiązać stany zadane w funkcji "Wyjścia gdy alarm" z przekaźnikami. Istnieją następujące możliwości:

- "Ustawienie stanu" zostaną włączone przekaźniki dokładnie te które ustawione zostały w funkcji "Wyjścia gdy alarm";
- "Dodanie stanu" włączone będą przekaźniki wynikające z normalnej pracy sterownika dodatkowo przekaźniki ustawione w funkcji "Wyjścia gdy alarm";
- "Odjecie stanu" z pracujących przekaźników (normalna praca sterownika) zostaną wyłączone te które są ustawione w funkcji "Wyjścia gdy alarm".

"Status alarmu" – ta funkcja określa jak ma zadziałać sterownik, gdy wystąpi dany alarm, istnieją następujące możliwości:

- "Alarm wyłączony" sterownik będzie ignorował dany alarm;
- "Przerwanie procesu" jeżeli sterownik będzie w trakcie procesu i nastąpi alarm, to proces zostanie przerwany;

 - "Kontynuacja procesu" – jeżeli sterownik będzie w trakcie procesu i nastąpi alarm, to sterownik ustawi odpowiednio przekaźniki a proces będzie kontynuowany.

5.2.4. Stany specjalne - ustawienie parametrów - stanu PAUZY, stanu STOP oraz F1..F8

W sterowniku jest dziesięć stanów specjalnych: STOP i PAUZA oraz F1..F7. Dla każdego z tych stanów możemy ustawić:

- aktywne wyjścia;
- czas końca (w sekundach);
- logikę ustawienia wyjść w stosunku do ustawionych przekaźników w trwającym procesie.

5.2.5. Wyjścia – wyjścia dwustanowe

Każdy z wyjść przekaźnikowych ma indywidualnie ustawiane parametry pracy.

Pracę każdego przekaźnika opisuje (w zależności od wybranego trybu pracy):

- nazwa;
- ikona;
- typ czasowy (czasy Ta, Tb [sek]);
- typ regulatora (kanał zadany, kanał pomiarowy);
- przesunięcie wartości zadanej regulatora względem wartości zadanej w programie: "offset";
- przesunięcie poziomu działania algorytmu z dynamiczną wartością zadaną "okno";
- histereza "dolna";
- histereza "górna".

Aby ustawić parametry wyjść dwustanowych należy:

- a) wybrać funkcję "Wy. dwustanowe";
- b) pojawi się lista wszystkich przekaźników;

UWAGA!!!

Przy pierwszym uruchomieniu lista przekaźników zawiera nazwy domyślne, należy wprowadzić właściwe nazwy przekaźników za pomocą klawiatury alfanumerycznej.

- c) należy wybrać przekaźnik którego parametry chcemy ustawić (sterownik będzie przechodził do kolejnych ustawień po naciśnięciu przycisku "OK");
- d) wprowadzić nazwę;
- e) wybrać ikonę dla danego wyjścia;

- f) ustawić tryb czasowy, możliwe tryby:
 - zawsze wyłącz: przekaźnik bezwarunkowo wyłączony;
 - zawsze załącz: przekaźnik załączony zgodnie z definicją dla wykonywanego kroku, jeżeli w danym kroku przekaźnik włączony to przez cały krok jest on włączony;
 - opóźnione załączenie:

- opóźnione wyłączenie:

- impulsator na starcie załączony:

- impulsator na starcie wyłączony:

- impulsator jednorazowy na starcie wyłączony:

- impulsator jednorazowy na starcie załączony:

Zależnie od wybranego trybu ustawić czasy Ta i Tb [sek].

- g) wybrać regulator sterujący danym przekaźnikiem, możliwe regulatory:
 - regulator wyłączony;
 - grzanie dochodzenie:

- chłodzenie dochodzenie;
- grzanie histereza:

- chłodzenie histereza:

Zależnie od wybranego trybu regulatora:

- wybrać kanał pomiarowy;
- wybrać kanał zadany;
- wprowadzić offset;
- wprowadzić "okno";
- wprowadzić histerezę dolną;
- wprowadzić histerezę górną.

UWAGA!!!

Dla regulatora można ustawić dowolny kanał pomiarowy i niezależny kanał zadany

- licznik impulsów: zlicza impulsy z wybranego wejścia kontrolnego. Dla tego typu regulatora należy wybrać kanał pomiarowy oraz kanał zadany. Wartość zadana – zadana ilość impulsów do zliczenia podawana jest podczas edycji programu. Można zdefiniować tylko 1 taki regulator!
- h) przeprowadzić konfigurację pozostałych wyjść dwustanowych.

5.2.6. Wyjścia – wyjścia analogowe

W celu skonfigurowania wyjść analogowych:

- a) wybrać funkcję Wy. analogowe;
- b) wybrać wyjście do edycji i wcisnąć "OK":

Wy. analogowe	
AO 1	
AO 2	
AO 3	
	OK

Możliwe tryby pracy wyjścia analogowego:

- Wyłączone

AO 1	
Wyłączone	
Zadajnik	
Regulator 1	1
Dodatek 1	Wielkość dla zadajnika
min. 0 max. 100	

- **Zadajnik.** Wartość wystawiana przez wyjście analogowe jest określona za pomocą "Kanałów zadanych" dostępnych z listy:

Dostępna opcja **Dodatek 1, 2** pozwala na sterowanie wyjściem analogowym przy pomocy dodatkowej, dowolnej wartości, niezależnej od wielkości związanych z procesem technologicznym. Wartość dodatku ustawia się podczas programowania procesu (patrz punkt 4.1).

- **Regulator.** Wyjście analogowe pracuje jako regulator PID, dostępny z listy zdefiniowanych regulatorów (pkt. 5.2.7.). Zatwierdzić przyciskiem "OK":

2.	Regulator 2
3.	Regulator 3
4.	Regulator 4
5.	Regulator 5

- c) po wybraniu pożądanego trybu pracy należy wprowadzić wartość "min", "max" oraz wartość dla stanu STOP i PAUZA. Zwrócić uwagę na to, że są to wartości skalujące zakres natężenia prądu na wyjściu analogowym. Typ wyjścia prądowego (0...20mA lub 4...20mA) można zmienić w USTAWIENIACH (pkt. 5.2.1.). Zatwierdzić przyciskiem "OK";
- d) przeprowadzić konfigurację pozostałych wyjść analogowych.

5.2.7. Regulatory PID

W sterowniku iMAX500 mamy możliwość skonfigurowania 5 ustawień regulatora PID

W menu *funkcje serwisowe 1* wybieramy ikonę Z listy wybieramy PID który chcemy skonfigurować...

Regulatory
1. Regulator 1
2. Regulator 2
3. Regulator 3
4. Regulator 4
5. Regulator 5

Po wyborze żądanego PID z listy mamy dostęp do opcji konfiguracyjnych – w pierwszym kroku nadajemy nazwę.

Regulatory
1. Regulator 1
1 2 3 ABC DEF
4 5 6 GHI JKL MNO
PQRS 8 9 WXYZ
- <u>0</u> +

Kiedy nazwa regulatora zostanie wprowadzona zatwierdzamy ją klawiszem "OK" i przechodzimy do ustawień.

5.2.8. Przegląd techniczny

Aby ustawić datę przeglądu technicznego należ wybrać funkcję "Przegląd" i wprowadzić odpowiednią datę i czas z klawiatury zatwierdzając wybór przyciskiem OK. Aktywacja tej funkcji wymaga włączenia jej w ustawieniach parametrów sterownika, komórka F58.

5.2.9. Program mycia

Program Mycia realizowany jest w oparciu o specjalne kroki technologiczne, których parametry są ustawiane niezależnie od kroków technologicznych wykorzystywanych w zwykłych programach.

Aby ustawić parametry poszczególnych kroków, wykorzystanych w programie "Mycie" należy:

wybrać funkcję "Kroki mycia";

postępować analogicznie jak przy programowaniu zwykłych kroków technologicznych (jak w pkt. 4.1.)

5.3. Autostart

W celu ustawienia automatycznego uruchamiania wybranego programu o zadanej godzinie, wybierz funkcję "Autostart" z menu.

Na ekranie pojawi się:

- -aktualna data i godzina
- -data i godzina autostartu
- -wybrany program

-wybrany krok, od którego powinien rozpocząć się program

Po ustawieniu wszystkich parametrów autostartu, wciśnij przycisk "START". Program uruchomi się o zadanej godzinie.

5.4. Opis złącz i sposobu podłączenia urządzeń zewnętrznych

5.4.1. Konfiguracja wejść 1-Wire

Poniżej przedstawiono tabelę z możliwymi schematami ustawienia wejść cyfrowych 1-Wire:

F15	0	0	0	5	5	5
F65	0	1	2	0	1	2
TEMP. KOMORY	Ch1	CLIP	Ch1	Ch1	CLIP	Ch1
WILGOTNOŚĆ	PSYCHRO.	CLIP	PSYCHRO.	CLIP	CLIP	PSYCHRO.
TEMP. PŁYTY	Ch4	Ch4	PTOWK	Ch4	Ch4	PTOWK
TEMP. DYMU	-	-	Ch4	-	-	Ch4

- 5.4.2. Sposób podłączenia czujników 1-Wire do sterownika INDU iMAX 500
 - a) CLIP

5.4.3. Opis złącz - iMAX500(F) KW-V(H)

5.4.4. Opis złącz - iMAX500(F) KW-V(H) - 28TO

5.4.5. Opis złącz - iMAX500(F) KW-V(H) – WYJŚCIA PRĄDOWE

6. Dane techniczne	
ZASILANIE:	24V DC ±10% 1A
POBÓR MOCY:	18 W
WYMIARY:	Głębokość montażowa wraz z przyłączami: 100 mm Wymiary zewnętrzne indu iMAX500: 178x270mm
WYŚWIETLACZ:	QVGA/320x240 - TFT 5,7" - 16,777,216 kolorów Ekran dotykowy
WAGA:	Sterownik: 1200g
OBUDOWA:	Jednoczęściowa typu Front Panel
STOPIEŃ OCHRONY:	Od strony przyłączy: IP 20 Od czoła: IP 65
CPU:	ARM7
ZEGAR CZASU RZECZYWISTEGO :	Tak
OPROGRAMOWANIE:	Wbudowana aplikacja: komora wędzarnicza
WYJŚCIA:	14 przekaźnikowych*(***) - 2A (250VAC/24VDC) 28 tranzystorowych** - 24x 400mA/kanał 24VDC, 4x 100mA/kanał 24VDC 1x analogowe*(**) (konfigurowane: 020mA lub 420mA)
	3x analogowe*** (konfigurowane: 020mA, 420mA)
	*iMAX500(F) KW-V(H) **iMAX500(F) KW-V(H) 28TO ***iMAX500(F) KW-V(H) WYJŚCIA PRĄDOWE
WEJŚCIA:	4 analogowe (konfigurowane: PT100, PT500, PT1000, 020mA, 420mA, Termopara R, S, B, T, J, E, K, N)
	8 cyfrowych (24VAC/DC)
WEJŚCIA CYFROWE POMIAROWE:	1 (1-Wire)
PORTY KOMUNIKACYJNE:	1xRS 485 (komunikacja z PC) 1xRS232 (nieobsługiwane)
WARUNKI PRACY:	Temperatura pracy 0 °C +55 °C Temperatura składowania -20 °C +65 °C Wilgotność : 585%